Альфа-распад. бета-распад

История

Открытие и характеристика распада β

Радиоактивность обнаруживалась в 1896 Анри Бекрэлем в уране, и впоследствии наблюдалась Мари и Пьером Кюри в тории и в новом полонии элементов и радии.

В 1899 Эрнест Резерфорд разделил радиоактивную эмиссию на два типа: альфа и бета (теперь бета минус), основанный на проникновении объектов и способности вызвать ионизацию. Альфа-частицы могли быть остановлены тонкими листками бумаги или алюминием, тогда как бета-лучи могла проникнуть через несколько миллиметров алюминия. (В 1900 Пол Виллард определил еще больше проникающего типа радиации, которую Резерфорд идентифицировал как существенно новый тип в 1903 и назвал гамма-лучи).

В 1900 Беккерель имел размеры, отношение массы к обвинению для бета частиц методом Дж.Дж. Томсона раньше изучало лучи катода и определяло электрон. Он нашел, что для бета частицы совпадает с для электрона Thomson, и поэтому предположил, что бета частица — фактически электрон.

В 1901 Резерфорд и Фредерик Содди показали, что альфа-и бета радиоактивность включает превращение атомов в атомы других химических элементов. В 1913, после того, как продукты более радиоактивных распадов были известны, Содди и Кэзимирз Фэджэнс независимо предложили их радиоактивный закон о смещении, который заявляет, что бета (т.е.,) эмиссия одного элемента производит другой элемент одно место вправо в периодической таблице, в то время как альфа-эмиссия производит элемент два места налево.

Neutrinos в бета распаде

Исторически, исследование бета распада представило первые вещественные свидетельства нейтрино. Измерения бета спектра распада в 1911 Лиз Мейтнер и Отто Хэном и в 1913 Джин Дэнисз показали многократные линии на разбросанном фоне, предложив первый намек непрерывного спектра. В 1914 Джеймс Чедвик использовал магнитный спектрометр с одним из новых прилавков Ганса Гейгера, чтобы сделать более точное измерение и показал, что спектр был непрерывен. Это было в очевидном противоречии к закону сохранения энергии, поскольку казалось, что энергия была потеряна в бета процессе распада. Вторая проблема состояла в том, что вращение азота 14 атомов было целым числом в противоречии к предсказанию Резерфорда.

В 1920–1927, Чарльз Драммонд Эллис (наряду с Джеймсом Чедвиком и коллегами) далее установил, что бета спектр распада непрерывен, заканчивая все споры. У этого также была эффективная верхняя граница в энергии, которая была серьезным ударом по предположению Бора, что сохранение энергии могло бы быть верным только в статистическом смысле и могло бы быть нарушено в любом данном распаде. Теперь проблема того, как объяснить изменчивость энергии в известных бета продуктах распада, а также для сохранения импульса и углового момента в процессе, стала острой.

В известном письме, написанном в 1930, Вольфганг Паули предположил, что в дополнение к электронам и протонам атомные ядра также содержали чрезвычайно легкую нейтральную частицу, которую он назвал нейтроном. Он предположил, что этот «нейтрон» также испускался во время бета распада (таким образом составляющий известную недостающую энергию, импульс и угловой момент) и просто еще не наблюдался. В 1931 Энрико Ферми переименовал «нейтрон» Паули к нейтрино, и в 1934, Ферми издал очень успешную модель бета распада, в котором были произведены neutrinos. Взаимодействие нейтрино с вопросом было так слабо, что, обнаруживая это доказало серьезную экспериментальную проблему, с которой наконец справились в 1956 в эксперименте нейтрино Кауэна-Reines. Однако свойства neutrinos были (с несколькими незначительными модификациями), как предсказано Паули и Ферми.

Несохранение паритета

В 1956 Цзянь-Шюн У и коллеги доказали в эксперименте Ву, что паритет не сохранен в бета распаде. Этот удивительный факт постулировался незадолго до этого в статье Tsung-дао Ли и Чэнь Нин Ян.

Открытие других типов бета распада

В 1934 Фредерик и Ирэн Жолио-Кюри бомбардировали алюминий альфа-частицами, чтобы произвести ядерную реакцию + → + и заметили, что изотоп продукта испускает позитрон, идентичный найденным в космических лучах Карлом Дэвидом Андерсоном в 1932. Это было первым примером распада (эмиссия позитрона), который они назвали искусственной радиоактивностью, так как недолгий нуклид, который не существует в природе.

Теория электронного захвата была сначала обсуждена Джаном-Карло Викком в газете 1934 года, и затем развита Hideki Yukawa и другими. Захват K-электрона сначала наблюдался в 1937 Луисом Альваресом в нуклиде, В. Альварес продолжал изучать электронный захват в Ga и других нуклидах.

Типы переходов бета-распада

Бета-распады можно классифицировать по угловому моменту (  значение L ) и полному спину (  значение S ) испускаемого излучения. Поскольку должен сохраняться полный угловой момент, включая орбитальный и спиновой угловой момент, бета-распад происходит посредством множества переходов квантового состояния в различные ядерные угловые моменты или спиновые состояния, известные как переходы «Ферми» или «Гамова – Теллера». Когда частицы бета-распада не несут угловой момент ( L = 0 ), распад называется «разрешенным», в противном случае — «запрещенным».

Другие режимы распада, которые встречаются редко, известны как распад связанного состояния и двойной бета-распад.

Ферми переходы

Ферми переход является бета — распад , в котором вращается излученного электрона (позитрона) и анти-нейтрино (нейтрино) пара к суммарным спином , что приводит к угловому изменению импульса между начальным и конечным состояниями ядра (предполагая , что разрешенный переход ). В нерелятивистском пределе ядерная часть оператора ферми-перехода имеет вид
Sзнак равно{\ displaystyle S = 0}ΔJзнак равно{\ displaystyle \ Delta J = 0}

ОFзнак равнограммV∑аτ^а±{\ displaystyle {\ mathcal {O}} _ {F} = G_ {V} \ sum _ {a} {\ hat {\ tau}} _ {a \ pm}}

с константой слабого сцепления вектор, в изоспиновой поднятия и опускания операторов , а также работает по всем протонов и нейтронов в ядре.
граммV{\ displaystyle G_ {V}}τ±{\ displaystyle \ tau _ {\ pm}} а{\ displaystyle a}

Переходы Гамова – Теллера

Гамова-Теллера переход является бета — распад , в котором вращается излученного электрона (позитрона) и анти-нейтрино (нейтрино) пара к суммарным спином , что приводит к угловому изменению импульса между начальным и конечным состояниями ядра (предполагая разрешенный переход). В этом случае ядерная часть оператора определяется выражением
Sзнак равно1{\ Displaystyle S = 1}ΔJзнак равно,±1{\ displaystyle \ Delta J = 0, \ pm 1}

ОграммТзнак равнограммА∑аσ^аτ^а±{\ displaystyle {\ mathcal {O}} _ {GT} = G_ {A} \ sum _ {a} {\ hat {\ sigma}} _ {a} {\ hat {\ tau}} _ {a \ pm }}

с слабой аксиальной константой, и на спиновых матрицы Паулей , который может производить спин-флип в затухающем нуклоне.
граммА{\ displaystyle G_ {A}}σ{\ displaystyle \ sigma}

Запрещенные переходы

Когда L > 0 , распад называют «запрещенным» . Правила ядерного отбора требуют, чтобы высокие  значения L сопровождались изменениями ядерного спина  ( J ) и четности  (π). Правила выбора L- го запрещенного перехода:

ΔJзнак равно-L-1,L,L+1;Δπзнак равно(-1)L,{\ Displaystyle \ Delta J = -L-1, L, L + 1; \ Delta \ pi = (- 1) ^ {L},}

где Δπ = 1 или -1 соответствует отсутствию изменения четности или изменению четности соответственно. Частный случай перехода между изобарическими аналоговыми состояниями, где структура конечного состояния очень похожа на структуру начального состояния, называется «сверхразрешенным» для бета-распада и происходит очень быстро. В следующей таблице перечислены значения Δ J и Δπ для первых нескольких значений  L :

ЗапретΔ JΔπ
Сверхразрешеннет
Разрешается0, 1нет
Сначала запрещено0, 1, 2да
Второй запретный1, 2, 3нет
Третье запрещено2, 3, 4да

История открытия

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом.

24 февраля 1896 года на заседании Французской академии наук он сделал сообщение «Об излучении, производимых фосфоресценцией». Но уже через несколько дней в интерпретацию полученных результатов пришлось внести корректировки. 26 и 27 февраля в лаборатории Беккереля был подготовлен очередной опыт с небольшими изменениями, но из-за облачной погоды он был отложен. Не дождавшись хорошей погоды, 1 марта Беккерель проявил пластинку, на которой лежала урановая соль, так и не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Уже 2 марта Беккерель доложил об этом открытии на заседании Парижской Академии наук, озаглавив свою работу «О невидимой радиации, производимой фосфоресцирующими телами».

Впоследствии Беккерель испытал и другие соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу — урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают из-за радиоактивного загрязнения, внесённого при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Примечания

  1. Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1994. — Т. 4. Пойнтинга — Робертсона — Стримеры. — С. 210. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Манолов К., Тютюнник В. Биография атома. Атом — от Кембриджа до Хиросимы. — Переработанный пер. с болг.. — М.: Мир, 1984. — С. 20—21. — 246 с.
  3. Климов А. Н. Ядерная физика и ядерные реакторы. — Москва: Энергоатомиздат, 1985. — С. 352.
  4. Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. Основы теории и методы расчета ядерных энергетических реакторов. — Москва: Энергоатомиздат, 1982.
  5. I.R.Cameron, University of New Brunswick. Nuclear fission reactors. — Canada, New Brunswick: Plenum Press, 1982.
  6. Камерон И. Ядерные реакторы. — Москва: Энергоатомиздат, 1987. — С. 320.

Запрещенные переходы

Бета распады могут быть классифицированы согласно — ценность испускаемой радиации. Когда, распад упоминается, как «запрещено». Ядерные правила выбора требуют, чтобы высокие L-ценности сопровождались изменениями в ядерном вращении и паритет (π). Правила выбора для th, запрещенного переходы:

где или не соответствует никакому паритетному изменению или паритетному изменению, соответственно. Особый случай 0 → 0 переходов (который в гамма распаде абсолютно запрещен) упоминаются, как «суперпозволено» для бета распада и продолжаются очень быстро этим маршрутом распада. (Это конкурирует с внутренним преобразованием для распада взволнованных ядер, где отношение нейтронов к протонам не одобряет бета распад ни в одном направлении). В следующей таблице перечислены Δ и ценности Δπ для первых нескольких ценностей:

Радиоактивные превращения. Альфа- и бета-распад

Подробности
Просмотров: 387

Э. Резенфорд вместе с с английским радиохимиком Ф. Содди доказал, что радиоактивность сопровождается самопроизвольным превращением одного химического элемента в другой.
Причем в результате радиоактивного излучения изменения претерпевают ядра атомов химических элементов.

ОБОЗНАЧЕНИЕ ЯДРА АТОМА

ИЗОТОПЫ

Среди радиоактивных элементов были обнаружены элементы, неразличимые химически, но разные по массе. Эти группы элементов были названы «изотопами» («занимающими одно место в
табл. Менделеева») . Ядра атомов изотопов одного и того же химического элемента различаются числом нейтронов.

В настоящее время установлено, что все химические элементы имеют изотопы.
В природе все без исключения химические элементы состоят из смеси нескольких изотопов, поэтому в таблице Менделеева атомные массы выражены дробными числами.
Изотопы даже нерадиоактивных элементов могут быть радиоактивны.

АЛЬФА — РАСПАД

-альфа-частица (ядро атома гелия)
— характерен для радиоактивных элементов порядковым номером больше 83
.- обязательно выполняется закон сохранения массового и зарядового числа.
— часто сопровождается гамма-излучением.

Реакция альфа-распада:

При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к её началу, чем исходный.

Физический смысл реакции:
в результате вылета альфа-частицы заряд ядра уменьшается на 2 элементарных заряда и образуется новый химический элемент.

Правило смещения:

При бета-распаде одного химического элемента образуется другой элемент, который расположен в таблице Менделеева в следующей клетке за исходным (на одну клетку ближе к концу таблицы).

БЕТА — РАСПАД

— бета-частица (электрон).
— часто сопровождается гамма-излучением.
— может сопровождаться образованием антинейтрино ( легких электрически нейтральных частиц, обладающих большой проникающей способностью).
— обяэательно должен выполняться закон сохранения массового и зарядового числа.

Реакция бета-распада:

Физический смысл реакции:
нейтрон в ядре атома может превращаться в протон, электрон и антинейтрино, в результате ядро излучает электрон.

Правило смещения:

ДЛЯ ТЕХ, КТО ЕЩЁ НЕ УСТАЛ

Предлагаю написать реакции распада и сдать работу.( составьте цепочку превращений)

1. Ядро какого химического элемента является продуктом одного альфа-распада и двух бета-распадов ядра данного элемента ?

2.Ядро изотопа висмута получилось из другого ядра после одного альфа-распада и одного бета-распада.

Что это за ядро?

Следующая страница «Состав атомного ядра. Ядерные силы»

Назад в раздел «9 класс»

Строение атома — Класс!ная физика

Радиоактивность —
Радиоактивные превращения —
Состав атомного ядра. Ядерные силы —
Энергия связи. Дефект масс —
Деление ядер урана —
Ядерная цепная реакция —
Ядерный реактор —
Термоядерная реакция

Гамма-распад (изомерный переход)

Основная статья: Изомерия атомных ядер

Почти все ядра имеют, кроме основного квантового состояния, дискретный набор возбуждённых состояний с большей энергией (исключением являются ядра 1H, 2H, 3H и 3He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьё время жизни измеряется микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.

Теория

Естественная радиоактивность — самопроизвольный распад атомных ядер, встречающихся в природе.

Искусственная радиоактивность — самопроизвольный распад атомных ядер, полученных искусственным путём через соответствующие ядерные реакции.

Ядро, испытывающее радиоактивный распад, и ядро, возникающее в результате этого распада, называют соответственно материнским и дочерним ядрами. Изменение массового числа и заряда дочернего ядра по отношению к материнскому описывается правилом смещения Содди.

Распад, сопровождающийся испусканием альфа-частиц, назвали альфа-распадом; распад, сопровождающийся испусканием бета-частиц, был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом. Гамма-излучение часто сопровождает другие типы распада, когда в результате первого этапа распада возникает дочернее ядро в возбуждённом состоянии, затем испытывающее переход в основное состояние с испусканием гамма-квантов.

Энергетические спектры α-частиц и γ-квантов, излучаемых радиоактивными ядрами, прерывистые («дискретные»), а спектр β-частиц — непрерывный.

В настоящее время, кроме альфа-, бета- и гамма-распадов, обнаружены распады с испусканием нейтрона, протона (а также двух протонов), кластерная радиоактивность, спонтанное деление. Электронный захват, позитронный распад (или β+-распад), а также двойной бета-распад (и его виды) обычно считаются различными типами бета-распада.

Некоторые изотопы могут испытывать одновременно два или более видов распада. Например, висмут-212 распадается с вероятностью 64 % в таллий-208 (посредством альфа-распада) и с вероятностью 36 % в полоний-212 (посредством бета-распада).

Образовавшееся в результате радиоактивного распада дочернее ядро иногда оказывается также радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивное ядро. Последовательность таких распадов называется цепочкой распадов, а последовательность возникающих при этом нуклидов называется радиоактивным рядом. В частности, для радиоактивных рядов, начинающихся с урана-238, урана-235 и тория-232, конечными (стабильными) нуклидами являются соответственно свинец-206, свинец-207 и свинец-208.

Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. В каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минус- или бета-плюс-распадов они превращаются в ближайший бета-стабильный нуклид. Ядра, находящиеся в изобарной цепочке между двумя бета-стабильными нуклидами, могут испытывать и β−-, и β+-распад (или электронный захват). Например, существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:

1940K+e−→1840Ar+νe,{\displaystyle {}_{19}^{40}{\textrm {K}}+e^{-}\rightarrow {}_{18}^{40}{\textrm {Ar}}+\nu _{e},}
1940K→1840Ar+e++νe,{\displaystyle {}_{19}^{40}{\textrm {K}}\rightarrow {}_{18}^{40}{\textrm {Ar}}+e^{+}+\nu _{e},}
1940K→2040Ca+e−+ν¯e.{\displaystyle {}_{19}^{40}{\textrm {K}}\rightarrow {}_{20}^{40}{\textrm {Ca}}+e^{-}+{\bar {\nu }}_{e}.}

Радиоактивность природных элементов

Экспериментально установлено, что радиоактивны, то есть не имеют стабильных изотопов, все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута).

Все более лёгкие элементы, помимо стабильных изотопов, имеют радиоактивные изотопы с разными периодами полураспада, варьирующимися от долей наносекунды до значений, на много порядков превышающих возраст Вселенной. Например, теллур-128 имеет самый долгий измеренный период полураспада из всех изученных радионуклидов, ~2,2·1024 лет.

Исключение по нестабильности из элементов легче висмута составляют прометий и технеций, не имеющие долгоживущих относительно длительности геологических эпох изотопов. Наиболее долгоживущий изотоп технеция — технеций-98 — имеет период полураспада около 4,2 млн лет, а самый долгоживущий изотоп прометия — прометий-145 — 17,5 лет. Поэтому изотопы технеция и прометия со времени формирования Земли не сохранились в земной коре и получены искусственно.

Существует много природных радиоактивных изотопов, период полураспада которых соизмерим с возрастом Земли или многократно превышает его, поэтому, несмотря на их радиоактивность, эти изотопы содержатся в природной изотопной смеси соответствующих элементов. Примерами могут служить калий-40, рений-187, рубидий-87, теллур-128 и многие другие.

Измерение отношения концентраций некоторых из долгоживущих изотопов и продуктов их распада позволяет абсолютно геологически датировать время кристаллизации горных минералов, пород и метеоритов.

История

Анри Беккерель , экспериментируя с флуоресценцией , случайно обнаружил, что уран выставил фотографическую пластину, обернутая черной бумагой, с неизвестным излучением , которое не может быть выключено , как рентгеновские лучи .

Эрнест Резерфорд продолжил эти эксперименты и открыл два разных вида излучения:

  • альфа-частицы, которые не появлялись на пластинах Беккереля, потому что они легко поглощались черной оберточной бумагой
  • бета-частицы, которые в 100 раз более проницаемы, чем альфа-частицы.

Он опубликовал свои результаты в 1899 году.

В 1900 году Беккерель измерил отношение массы к заряду ( m / e ) для бета-частиц методом Дж. Дж. Томсона, который использовался для изучения катодных лучей и идентификации электрона. Он обнаружил, что e / m для бета-частицы такое же, как для электрона Томсона, и поэтому предположил, что бета-частица на самом деле является электроном.

Описание

Два типа бета-распада известны как бета-минус и бета-плюс . При бета-минус (β — ) распаде нейтрон превращается в протон, и в результате этого процесса создаются электрон и электронный антинейтрино ; в то время как в бета-плюсовом (β + ) распаде протон превращается в нейтрон, и этот процесс создает позитрон и электронное нейтрино. β + -распад также известен как испускание позитронов .

Бета-распад сохраняет квантовое число, известное как лептонное число , или количество электронов и связанных с ними нейтрино (другие лептоны — это мюонные и тау- частицы). Эти частицы имеют лептонное число +1, а их античастицы — лептонное число -1. Поскольку протон или нейтрон имеет нулевой лептонное число, β + распад (позитрон, или антиэлектрона) должно сопровождаться электронным нейтрино, а β — распад (электрон) должен сопровождаться электронным антинейтрино.

Пример электронной эмиссии (β — распад) — это распад углерода-14 до азота-14 с периодом полураспада около 5730 лет:

14 6C → 14 7N + е- + νе

В этой форме распада исходный элемент становится новым химическим элементом в процессе, известном как ядерная трансмутация . Этот новый элемент имеет неизменное массовое число A , но атомный номер Z увеличен на единицу. Как и во всех ядерных распадах, распадающийся элемент (в данном случае14 6C) известен как родительский нуклид, а полученный элемент (в данном случае14 7N) известен как дочерний нуклид .

Другой пример — распад водорода-3 ( трития ) в гелий-3 с периодом полураспада около 12,3 года:

3 1ЧАС → 3 2Он + е- + νе

Примером излучения позитронов (β + распад) является распад магния-23 на натрий-23 с периодом полураспада около 11,3 с:

23 12Mg → 23 11Na + е+ + νе

β + -распад также приводит к ядерной трансмутации, в результате чего элемент имеет атомный номер, уменьшенный на единицу.

Бета-спектр, показывающий типичное разделение энергии между электроном и антинейтрино

Бета-спектр или распределение значений энергии для бета-частиц является непрерывным. Полная энергия процесса распада делится между электроном, антинейтрино и нуклидом отдачи. На рисунке справа показан пример электрона с энергией 0,40 МэВ от бета-распада 210 Bi. В этом примере полная энергия распада составляет 1,16 МэВ, поэтому антинейтрино имеет оставшуюся энергию: 1,16 МэВ — 0,40 МэВ = 0,76 МэВ. Электрон в крайнем правом углу кривой будет иметь максимально возможную кинетическую энергию, а энергия нейтрино останется только его небольшой массой покоя.

Примеры расчётов

Пример 1

Если рассматривать достаточно близкие моменты времени t1{\displaystyle t_{1}} и t2{\displaystyle t_{2}}, то число ядер, распавшихся за этот промежуток времени t2−t1≪λ{\displaystyle t_{2}-t_{1}\ll \lambda }, можно приближённо записать как ΔN≈λN(t2−t1){\displaystyle \Delta N\approx \lambda N_{0}(t_{2}-t_{1})}.

С её помощью легко оценить число атомов урана-238, имеющего период полураспада T12=4,498⋅109{\displaystyle T_{1/2}=4,498\cdot 10^{9}} лет, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Имея в виду, что количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02⋅1023 атомов, а в году 365⋅24⋅60⋅60{\displaystyle 365\cdot 24\cdot 60\cdot 60} секунд, можно получить, что

ΔN≈,6934,498⋅109⋅365⋅24⋅60⋅606,02⋅1023238⋅1000=12⋅106.{\displaystyle \Delta N\approx {\frac {0,693}{4,498\cdot 10^{9}\cdot 365\cdot 24\cdot 60\cdot 60}}{\frac {6,02\cdot 10^{23}}{238}}\cdot 1000=12\cdot 10^{6}.}

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду из наличного количества урана распадается его доля, равная

12⋅106⋅2386,02⋅1023⋅1000=47⋅10−19.{\displaystyle {\frac {12\cdot 10^{6}\cdot 238}{6,02\cdot 10^{23}\cdot 1000}}=47\cdot 10^{-19}.}

Пример 2

Образец содержит 10 г изотопа плутония Pu-239 с периодом полураспада 24 400 лет. Сколько атомов плутония распадается ежесекундно?

Поскольку рассматриваемое время (1 с) намного меньше периода полураспада, можно применить ту же, что и в предыдущем примере, приближённую формулу:

ΔN≈Δt⋅Nln⁡2T12=Δt⋅mμNAln⁡2T12{\displaystyle \Delta N\approx \Delta t\cdot N_{0}{\frac {\ln 2}{T_{1/2}}}=\Delta t\cdot {\frac {{\frac {m}{\mu }}N_{A}\ln 2}{T_{1/2}}}}

Подстановка численных значений даёт
ΔN≈1⋅,693⋅10239⋅6⋅102324400⋅365⋅24⋅60⋅60=,693⋅2,5⋅10227,7⋅1011=2,25⋅1010.{\displaystyle \Delta N\approx 1\cdot {\frac {0,693\cdot {\frac {10}{239}}\cdot 6\cdot 10^{23}}{24400\cdot 365\cdot 24\cdot 60\cdot 60}}={\frac {0,693\cdot 2,5\cdot 10^{22}}{7,7\cdot 10^{11}}}=2,25\cdot 10^{10}.}

Когда рассматриваемый период времени сравним с периодом полураспада, следует пользоваться точной формулой

ΔN=N−N(t)=N(1−2−tT12).{\displaystyle \Delta N=N_{0}-N(t)=N_{0}\left(1-2^{-t/T_{1/2}}\right).}

Она пригодна в любом случае, однако для малых периодов времени требует вычислений с очень большой точностью. Так, для данной задачи:

ΔN=N(1−2−tT12)=2.5⋅1022(1−2−17.7⋅1011)=2.5⋅1022(1−0.99999999999910)=2.25⋅1010.{\displaystyle \Delta N=N_{0}\left(1-2^{-t/T_{1/2}}\right)=2.5\cdot 10^{22}\left(1-2^{-1/7.7\cdot 10^{11}}\right)=2.5\cdot 10^{22}\left(1-0.99999999999910\right)=2.25\cdot 10^{10}.}

Приложения

Бета-частицы можно использовать для лечения таких заболеваний, как рак глаз и костей, а также в качестве индикаторов. Стронций-90 — это материал, наиболее часто используемый для получения бета-частиц.

Бета-частицы также используются при контроле качества, чтобы проверить толщину предмета, такого как бумага , проходящего через систему роликов. Часть бета-излучения поглощается при прохождении через продукт. Если изделие сделать слишком толстым или тонким, соответственно будет поглощаться другое количество излучения. Компьютерная программа, контролирующая качество производимой бумаги, затем перемещает ролики, чтобы изменить толщину конечного продукта.

Осветительное устройство, называемое бета-светом, содержит тритий и люминофор . Когда тритий распадается , он испускает бета-частицы; они ударяют по люминофору, заставляя люминофор испускать фотоны , как электронно-лучевая трубка в телевизоре. Освещение не требует внешнего источника энергии и будет продолжаться, пока существует тритий (а люминофоры сами по себе химически не изменяются); количество света производится упадет до половины своего первоначального значения в 12,32 лет, в период полураспада трития.

Бета-плюс (или позитронный ) распад радиоактивного изотопа- индикатора является источником позитронов, используемых в позитронно-эмиссионной томографии (ПЭТ-сканирование).

Взаимодействие с другим вопросом

Голубое черенковское излучение Свет из бассейна реактора TRIGA происходит из-за того, что высокоскоростные бета-частицы движутся в воде со скоростью, превышающей скорость света ( фазовая скорость ) (что составляет 75% от скорости света в вакууме).

Из трех распространенных типов излучения, испускаемого радиоактивными материалами, альфа , бета и гамма , бета имеет среднюю проникающую способность и среднюю ионизирующую способность. Хотя бета-частицы, испускаемые различными радиоактивными материалами, различаются по энергии, большинство бета-частиц может быть остановлено несколькими миллиметрами алюминия . Однако это не означает, что бета-изотопные изотопы могут быть полностью экранированы такими тонкими экранами: когда они замедляются в веществе, бета-электроны испускают вторичные гамма-лучи, которые более проникающие, чем бета сами по себе. Защита, состоящая из материалов с более низким атомным весом, генерирует гамма-излучение с более низкой энергией, что делает такие экраны несколько более эффективными на единицу массы, чем экраны из материалов с высоким Z, таких как свинец.

Бета-излучение, состоящее из заряженных частиц, ионизирует сильнее, чем гамма-излучение. При прохождении через вещество бета-частица тормозится электромагнитными взаимодействиями и может испускать тормозное рентгеновское излучение .

В воде бета-излучение от многих продуктов ядерного деления обычно превышает скорость света в этом материале (что составляет 75% от скорости света в вакууме) и, таким образом, генерирует синее черенковское излучение, когда оно проходит через воду. Таким образом, интенсивное бета-излучение от топливных стержней реакторов плавательных бассейнов можно визуализировать через прозрачную воду, которая покрывает и защищает реактор (см. Иллюстрацию справа).

Обнаружение и измерение


Бета-излучение обнаружено в камере Вильсона изопропанола (после введения искусственного источника стронция-90)

Ионизирующее или возбуждающее воздействие бета-частиц на материю — это фундаментальные процессы, с помощью которых радиометрические приборы обнаружения обнаруживают и измеряют бета-излучение. Ионизация газа используется в ионных камерах и счетчиках Гейгера-Мюллера , а возбуждение сцинтилляторов — в сцинтилляционных счетчиках . В следующей таблице показаны величины излучения в единицах СИ и других единицах:

величин, связанных с ионизирующим излучением
КоличествоЕдиница измеренияСимволВыводГодЭквивалентность
СИ
Активность ( А )беккерельБкс −11974 г.Единица СИ
кюриCi3,7 × 10 10 с −11953 г.3,7 × 10 10  Бк
РезерфордRd10 6 с −11946 г.1000000 Бк
Экспозиция ( X )кулон на килограммКл / кгC⋅kg −1 воздуха1974 г.Единица СИ
рентгенрesu / 0,001293 г воздуха1928 г.2,58 × 10-4 Кл / кг
Поглощенная доза ( D )серыйГрДж ⋅ кг −11974 г.Единица СИ
эрг на граммэрг / гэрг⋅g −119501.0 × 10 −4 Гр
радрад100 эрг⋅г −11953 г.0,010 Гр
Эквивалентная доза ( H )зивертSvДж⋅кг −1 ×1977 г.Единица СИ
рентген-эквивалент человекаrem100 эрг⋅г −1 x1971 г.0,010 Зв
  • Серый (Гр), является единицей СИ поглощенной дозы , что количество энергии излучения на хранении в облученном материале. Для бета-излучения это численно равно эквивалентной дозе, измеренной зивертом , что указывает на стохастический биологический эффект низких уровней излучения на ткани человека. Весовой коэффициент преобразования поглощенной дозы в эквивалентную дозу составляет 1 для бета-излучения, тогда как альфа-частицы имеют коэффициент 20, что отражает их большее ионизирующее воздействие на ткани.
  • Радиан является устаревшей РКОЙ блоком для поглощенной дозы и бэры являются устаревшей РКА единица эквивалентной дозы, используемым главным образом в США.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий