Карл фридрих гаусс

Вклад в математику

Изучая краткую биографию Карла Гаусса и его вклад в науку, нужно начать с метода меньших квадратов, который Фридрих разработал, чтобы точно понять описанную информацию Пьяцци и отыскать Цереру. Это являлось прорывом в усреднении многих наблюдений, поскольку все из них были не совсем точными, чтобы получить достоверные расчеты. Его создание уравнений типа x(n-1)=0 и глубокие работы по теории квадратичных форм позволили использовать комплексные числа, к примеру, чтобы доказать результаты о целых числах.

В 1820 г. Фридрих обнаруживает, что есть концептуальная кривизна поверхности, являющаяся неотъемлемым ее элементом. Это объяснило, почему определенные поверхности нельзя точно скопировать на другие, не проведя преобразований, как нельзя в точности сделать карту Земли на бумаге. Это позволило освободить от изучения поверхностей твердых тел.

В 1840 г. отдельно от математика Грина из Англии, он разработал предмет теории потенциала, это большой вклад в расширение исчисления функций с несколькими переменными значениями. Эта теория об изучении гравитации и сегодня применяется в различных сферах прикладной математики.

Составляя реферат о великом немецком ученом, также нужно не забывать, что Фридрих сделал множество открытий, но нигде даже кратко не публиковал их. До сих пор неизвестно, почему Гаусс так много делал для себя. Одна из версий этого заключается в том, что весь поток находящихся в голове идей были для ученого определенным стимулом для дальнейшей работы.

Также Карл долго трудился над эллиптическими функциями — их рассматривают как обобщение косинусных и синусоидальных функций в тригонометрии, Фридрих создал целую теорию по этому поводу. Через 10 лет Якоби и Абель получили славу за то, что сделали то же, что уже до них сделал Гаусс, просто они этого не знали.

Также Фридрих принял единую систему определения:

  • длина – 1 миллиметр;
  • время – 1 секунда;
  • масса – 1 грамм.

Детство и ранние годы

Карл Фридрих Гаусс, сын бедняка и необразованной матери, самостоятельно разгадал загадку даты собственного рождения и определил её как 30 апреля 1777 г. Гаусс с детства проявлял все признаки гениальности. Главный труд всей своей жизни, «Арифметические исследования», юноша закончил ещё в 1798 г., когда ему был всего 21 год, хотя издан он будет лишь в 1801 г

Работа эта имела первостепенную важность для совершенствования теории чисел как научной дисциплины, и представила эту область знаний в том виде, в каком мы знаем её сегодня. Потрясающие способности Гаусса так поразили герцога Брауншвейгского, что он отправляет Карла на обучение в Карлов коллегиум (ныне – Брауншвейгский технический университет), который Гаусс посещает с 1792 г

по 1795 г. В 1795-1798 г.г. Гаусс переходит в Гёттингский университет. За свои университетские годы математик доказал немало значимых теорем.

Биография Карла Фридрих Гаусса (1777-1855 гг.)

Краткая биография:

Имя: Карл Фридрих Гаусс

Дата рождения: 30 апреля 1777 г.

Дата смерти: 23 февраля 1855 г.

Образование: Гёттингенский университет

Место рождения: Брауншвейг

Место смерти: Гёттинген

Карл Фридрих Гаусс – немецкий астроном, математик и физик: биография с фото, открытия, интересные факты, пояс астероидов между Марсом и Юпитером, орбита Цереры.

Карл Фридрих Гаусс, одаренный невероятными математическими способностями, знаменитый ученый и астроном, родился в маленьком герцогстве Брауншвейг 30 апреля 1777 г. В детстве его учителя  называли  вундеркиндом, мальчик отличался большими способностями в учебе, его успехи превосходили  сверстников  в изучении точных наук. Один из его учителей, Мартин Бартельс, оценил научный потенциал Карла Фридриха и помог ему получить дальнейшее образование. В 1795 году юный Гаусс успешно окончил колледж и поступил в Геттингенский университет. Во время дальнейшего обучения в университете молодой человек проявлял необыкновенные способности в изучении, как точных наук, так и иностранных языков.

Одним из первых громких успехов Карла Фридриха Гаусса было доказательство построения при помощи циркуля и линейки правильного семнадцатиугольника. В университете в 1801 году преуспевающий в математике студент закончил свою первую серьезную работу под названием «Арифметические исследования».

После окончания университета некоторое время Гауссу пришлось пожить дома, а затем, по рекомендации выдающегося ученого Александра Гумбольдта, его приняли на работу в Геттинген, где он до конца жизни проработал директором обсерватории.

Гаусс проявлял себя в математике главным образом, но его достижения коснулись и астрономии. Так, с помощью него был открыт пояс астероидов, который находится между Марсом и Юпитером. Гаусс рассчитал параметры орбиты планеты Церера, вследствие чего было установлено, что она относится к абсолютно новому виду небесных тел.

Самым знаменитым трудом, проделанным Карлом Фридрихом Гауссом, была работа под названием «Теория движения небесных тел». Именно в ней ученый предложил теорию возмущения орбит. С помощью него он и его последователи могли с точностью вычислять орбиты небесных тел. Так, Гаусс, после публикования своей работы, вычислил орбиту кометы, а на следующий год вычислил орбиту другой.

В математике достижения Гаусса оказались невероятно ценными. Он запомнился в истории как величайший математик, двигатель прогресса и развития науки. Знаменитая теорема алгебры, термин  «гауссова кривизна», основы дифференциальной геометрии вошли в основу фундаментальных математических законов. «Исследования относительно кривых поверхностей» были оценены при жизни ученого и стали классикой в математике. «Теория биквадратичных вычетов» и открытие комплексных чисел также стали научным достоянием Гаусса.

Отличился Карл Фридрих Гаусс и в области физики. Его интересовала электромагнитная индукция, магнитные поля и электричество. Даже единица измерения в физике названа в его честь, магнитная индукция стала измеряться в гауссах. Вместе со своим коллегой Вильгельмом Вебером, он изобрел электрический телеграф. Это изобретение было первым в своем роде и было представлено публике в 183 году.

Карл Фридрих Гаусс был известен во всем мире, его талант и научные достижения признавали в разных странах. В России, Англии и Франции ученый был удостоен различными медалями и наградами за свои достижения. Кроме того, ученый превосходно владел языками, свободно говорил на английском, французском языках и даже латыни.

Карл Гаусс был великим ученым, который проявил свои математические таланты в разных областях науки. Он прожил долгую жизнь, за которую получил призвание и внес огромный вклад в развитие науки. Умер ученый в 1855 году.

Достижения в других научных сферах

Вице-гелиотроп. Латунь, золото, стекло, красное дерево (создан до 1801 года). С рукописной надписью: «Собственность господина Гаусса». Находится в Университете Гёттингена, первый Физический институт.

Настоящую известность Карлу Гауссу принесли вычисления, с помощью которых он определил положение планеты Цереры, открытой в 1801 году.

В последующем ученый не раз возвращается к астрономическим исследованиям. В 1811 году он рассчитывает орбиту новообнаруженной кометы, делает вычисления для определения расположения кометы «пожара Москвы» в 1812 году.

В 20-х годах 19 века Гаусс работает в сфере геодезии. Именно он создал новую науку – высшую геодезию. Также разрабатывает вычислительные методы для проведения геодезической съемки, издает цикл трудов по теории поверхностей, вошедших в публикацию «Исследования относительно кривых поверхностей» в 1822 году.

Обращается ученый и к физике. Он развивает теории капиллярности и системы линз, закладывает основы электромагнетизма. Совместно с Вильгельмом Вебером изобретает электрический телеграф.

Смерть и наследие

Гаусс умер в 1855 г. в Гёттингене, Ганновер (ныне – Нижняя Саксония в Германии). Тело его было кремировано и захоронено в Альбанифридхофе. Согласно результатам изучения его мозга Рудольфом Вагнером, мозг Гаусса имел массу 1.492 г и площадь сечения мозга 219.588 мм² (34.362 квадратных дюйма), что научно доказывает, что Гаусс был гением.

Высшая геодезия. Неевклидова геометрия

В 1818 Карл Гаусс одним из первых начинает размышлять над созданием неевклидовой геометрии, но от публикации полученных результатов воздерживается, опасаясь, по собственному признанию, «криков беотийцев» (т.е. возражений и насмешек невежд).

Десятилетие 1820-30 застает Гаусса за проведением геодезической съемки Ганноверского королевства и составлением его подробной карты. Гаусс не только проделывает огромную организационную работу и руководит измерением длины дуги меридиана от Геттингена до Альтоны, но и создает основы «высшей геодезии», занимающейся описанием действительной формы земной поверхности. Обобщающий труд «Исследования о предметах высшей геодезии» Гаусс создает в 1842-1847. В основе этого фундаментального труда лежат также принадлежащие Гауссу идеи так называемой внутренней геометрии поверхности, изложенной им в сочинении «Общие исследования о кривых поверхностях» (1827).

Локальные (т. е. характеризующие малую окрестность точки) свойства поверхности, по мысли Гаусса, естественнее связывать не с «посторонними», введенными извне, а с внутренними криволинейными координатами и выражать через дифференциальную форму от внутренних координат. Если поверхность изгибать не растягивая, то ее внутренние свойства остаются неизменными. Впоследствии по образу и подобию внутренней геометрии поверхностей Гаусса была создана многомерная риманова геометрия.

Обработка наблюдений

Непреходящее значение для всех наук, имеющих дело с обработкой наблюдений, имеют разработанные Гауссом методы получения наиболее вероятных значений измеряемых величин. Особенно широкую известность получил созданный Гауссом в 1821-1823 гг. метод наименьших квадратов. Гауссом заложены также и основы теории ошибок.

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1832 он создает так называемую абсолютную систему единиц, приняв за основные три единицы; единицу времени 1 с, единицу длины 1 мм и единицу массы 1 мг. В 1833 в тесном сотрудничестве с Вильгельмом Вебером Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает основные положения теории потенциала и доказывает знаменитую теорему Гаусса—Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера — не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения – это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: «Паллада». Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, – это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение — книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главное преступление учителя математики

Вряд ли после того случая Карл Гаусс испытал высокое чувство уважения по отношению к школьному учителю математики. Но если бы он знал, как последователи того учителя извратят самую суть метода … он взревел бы от негодования и через Всемирную организацию интеллектуальной собственности ВОИС добился запрета на использование своего честного имени в школьных учебниках!..

В чем главная ошибка школьного подхода? Или, как я выразился — преступление школьных учителей математики против детей?

Алгоритм непонимания

Что делают школьные методисты, абсолютное большинство которых думать не умеет ни фига?

Создают методики и алгоритмы (см. статью об этом). Это защитная реакция, предохраняющая учителей от критики («Все делается согласно …»), а детей — от понимания. И таким образом — от желания критиковать учителей! (Вторая производная чиновничьей «мудрости», научный подход к проблеме ). Человек не улавливая смысл скорее будет пенять на собственное непонимание, а не на тупость школьной системы.

Что и происходит: родители пеняют на детей, а учителя … то же на детей, «не понимающих математику!..

Смекаете?

Что сделал маленький Карл?

Абсолютно нешаблонно подошел к шаблонной задаче. Это квинтэссенция Его подхода. Это главное, чему следует учить в школе: думать не учебниками, а головой. Конечно, есть и инструментальная составляющая, которую вполне можно использовать … в поисках более простых и эффективных методов счета.

Метод Гаусса по-Виленкину

В школе учат, что метод Гаусса состоит в том, чтобы

попарно находить суммы чисел, равноотстоящих от краев числового ряда, непременно начиная с краев!
находить число таких пар и т.д.

Но:

что, если число элементов ряда окажется нечетным, как в задаче, которую задали сыну?..

«Подвох» состоит в том, что в этом случае следует обнаружить «лишнее» число ряда и прибавить его к сумме пар. В нашем примере это число 260.

Как обнаружить? Переписывая все пары чисел в тетрадь! (Именно почему учительница заставила детей делать эту тупую работу, пытаясь научить «творчеству» методом Гаусса … И именно поэтому такой «метод» практически неприменим к большим рядам данных, И именно поэтому он не является методом Гаусса).

Немного творчества в школьной рутине …

Сын же поступил иначе.

Сначала он отметил, что умножать легче число 500, а не 520

(20 + 500, 40 + 480 …).

Потом он прикинул: количество шагов оказалось нечетным: 500 / 20 = 25.

Тогда он в начало ряда добавил НОЛЬ (хотя можно было и отбросить последний член ряда, что также обеспечило бы четность) и сложил числа, дающие в сумме 500

0+500, 20+480, 40+460 …

26 шагов это 13 пар «пятисоток»: 13 х 500 = 6500..
Если мы отбросили последний член ряда, то пар будет 12, но к результату вычислений следует не забыть прибавить «отброшенную» пятисотку. Тогда: (12 х 500) + 500 = 6500 !

Несложно, правда?

А практически делается еще легче, что и позволяет выкроить 2-3 минуты на ДЗ по русскому, пока остальные «считают». К тому же сохраняет количество шагов методики: 5, что не позволяет критиковать подход за антинаучность.

Явно этот подход проще, быстрее и универсальнее, в стиле Метода. Но … учительница не то, что не похвалила, но и заставила переписать «правильным образом» (см. скриншот). То есть предприняла отчаянную попытку задушить творческий импульс и способность понимать математику на корню! Видимо, чтобы потом наняться репетитором … Не на того напала …

Все, что я так долго и нудно описал можно объяснить нормальному ребенку максимум за полчаса. Вместе с примерами.

Причем так, что он это никогда не забудет.

И это будет шаг к пониманию … не только математики.

Признайтесь: сколько раз в жизни вы складывали методом Гаусса? И я ни разу!

Но инстинкт понимания, который развивается (или гасится) в процессе изучения математических методов в школе … О!.. Это поистине незаменимая вещь!

Особенно в век всеобщей цифровизации, в который мы незаметно вошли под чутким руководством Партии и Правительства.

Несколько слов в защиту учителей …

Несправедливо и неправильно всю ответственность за такой стиль обучения сваливать исключительно на школьных учителей. Действует система.

Некоторые учителя понимают абсурдность происходящего, но что делать? Закон об образовании, ФГОСы, методики, технологические карты уроков … Все должно делаться «в соответствии и на основании» и все должно быть задокументировано. Шаг в сторону — встал в очередь на увольнение. Не будем ханжами: зарплата московских учителей ну очень неплохая … Уволят — куда идти?..

Поэтому сайт этот не об образовании. Он об индивидуальном образовании, единственно возможном способе выбраться из толпы поколения Z …

Примечания

  1. 12Немецкая национальная библиотека, Берлинская государственная библиотека, Баварская государственная библиотека и др. Record #104234644 // Общий нормативный контроль (GND) — 2012—2016. https://wikidata.org/wikipedia/Track:Q27302″>https://wikidata.org/wikipedia/Track:Q304037″>https://wikidata.org/wikipedia/Track:Q256507″>https://wikidata.org/wikipedia/Track:Q170109″>https://wikidata.org/wikipedia/Track:Q36578″>
  2. 12 идентификатор BNF: платформа открытых данных — 2011.

    https://wikidata.org/wikipedia/Track:Q19938912″>https://wikidata.org/wikipedia/Track:P268″>https://wikidata.org/wikipedia/Track:Q54837″>

  3. 1234verschiedene Autoren Allgemeine Deutsche Biographie / Hrsg.: Historische Commission bei der königl. Akademie der Wissenschaften — 1875.

    https://wikidata.org/wikipedia/Track:Q2818964″>https://wikidata.org/wikipedia/Track:Q14565672″>https://wikidata.org/wikipedia/Track:Q590208″>

  4. 12 Гаусс Карл Фридрих // Большая советская энциклопедия: / под ред. А. М. Прохоров — 3-е изд. — М.: Советская энциклопедия, 1971. — Т. 6 : Газлифт — Гоголево. — С. 144–145.

    https://wikidata.org/wikipedia/Track:Q17378135″>

  5. https://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826
  6. https://www.maa.org/publications/maa-reviews/50th-imo-50-years-of-international-mathematical-olympiads
  7. https://link.springer.com/content/pdf/10.1007%2F978-3-642-14565-0_3.pdf
  8. Математическая генеалогия — 1997. https://wikidata.org/wikipedia/Track:P549″>https://wikidata.org/wikipedia/Track:Q829984″>
  9. 12345 Боголюбов, 1983, с. 121—123.
  10. Гиндикин С. Г. Рассказы о физиках и математиках. — М.: МЦНМО, 2001. Глава «Король математиков».
  11. Brian Hayes. Gauss’s Day of Reckoning(неопр.) .American Scientist (2006). doi:10.1511/2006.59.200. Дата обращения 15 октября 2019.
  12. Боголюбов, 1983, с. 219.
  13. Тюлина, 1979, с. 178.
  14. Гаусс К. Об одном новом общем принципе механики (Über ein neues allgemeines Grundgesetz der Mechanik (недоступная ссылка) / Journal für Reine und Angewandte Mathematik. 1829. Bd. IV. — S. 232—235.) // Вариационные принципы механики: Сб. статей / Под ред. Л. С. Полака. — М.: Физматгиз, 1959. — 932 с. — С. 170—172.
  15. 123 Храмов, 1983, с. 76.
  16. Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 1. — М.: Наука, 1978. — С. 52.
  17. Дербишир Дж. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — М.: Астрель, 2010. — ISBN 978-5-271-25422-2. — С. 76—77.
  18. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. М.: Гостехиздат, 1956, С.119—120.
  19. Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии // Основания геометрии. — М.: ГИТТЛ, 1956.
  20. Обычно говорят, что он боялся быть непонятым. Действительно, в одном письме, где затрагивается вопрос о пятом постулате и неевклидовой геометрии, Гаусс пишет: «бойтесь крика беотийцев» <�…> Возможно, однако, другое объяснение молчания Гаусса: он один из немногих понимал, что, как бы много интересных теорем неевклидовой геометрии ни было выведено, это ещё ничего не доказывает — всегда теоретически остается возможность, что в качестве дальнейших следствий будет получено противоречивое утверждение. А может быть, Гаусс понимал (или чувствовал), что в то время (первая половина XIX в.) ещё не найдены математические понятия, позволяющие точно поставить и решить этот вопрос. // Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. XII, пар. 2, — Физматлит, Москва, 2009.
  21. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. — М.: Гостехиздат, 1956. — С. 103.
  22. Моисеев, 1961, с. 334.
  23. Göttinger Digitalisierungszentrum: Seitenansicht
  24. Тюлина, 1979, с. 179—180.
  25. Маркеев, 1990, с. 90.
  26. Голубев, 2000, с. 417.
  27. Дронг В. И., Дубинин В. В., Ильин М. М. и др. Курс теоретической механики / Под ред. К. С. Колесникова. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 758 с. — ISBN 978-5-7038-3490-9. — С. 526.
  28. Маркеев, 1990, с. 89.
  29. Голубев, 2000, с. 427.
  30. Гелиотроп Гаусса
  31. Измеряя мир (неопр.) (недоступная ссылка). Дата обращения 27 июня 2013. Архивировано 8 января 2014 года.

Историческое влияние

Гаусс в 1803 году

Создателями теории чисел историки заслуженно называют Ферма и Эйлера, но создателем современной теории чисел следует назвать Гаусса, идеи которого задали направление дальнейшего прогресса теории. Одним из главных достижений «Арифметических исследований» стало постепенное осознание математическим сообществом того факта, что многие проблемы теории чисел (и, как вскоре выяснилось, не только этой теории) связаны с необычными алгебраическими структурами, свойства которых предстояло изучить. Неявно в книге Гаусса уже использовались структуры групп, колец и полей, в том числе конечных, и решение изложенных в книге проблем часто заключалось в учёте их свойств и особенностей. Уже в данной книге Гаусс опирается на нестандартную (модулярную) арифметику; в более поздних работах он использует непривычную арифметику целых комплексных (гауссовых) чисел. По мере накопления материала необходимость в общей теории новых структур становилась всё более ясной.

Стиль «Арифметических исследований» подвергся критике за (местами) излишнюю краткость; тем не менее монография заслужила восторженную оценку Лагранжа, в его письме к Гауссу (1804 год) говорится: «Ваши «Исследования» сразу же возвысили Вас до уровня первых математиков, и я считаю, что последняя часть содержит самое красивое аналитическое открытие среди сделанных на протяжении длительного времени.

Далее исследования Гаусса были развиты в первую очередь самим Гауссом, который опубликовал ещё несколько работ по теории чисел, из них особый резонанс вызвали:

  • 1811: «Суммирование некоторых рядов особого вида».
  • 1828—1832: «Теория биквадратичных вычетов». В ней впервые появились гауссовы числа.

Пионерские работы Гаусса были продолжены Нильсом Абелем, который доказал невозможность решения в радикалах общего уравнения пятой степени. В теории алгебраических чисел работы Гаусса продолжили Якоби, Эйзенштейн и Эрмит. Якоби нашёл закон взаимности для кубических вычетов (1839) и исследовал кватернарные формы. Коши изучил общее неопределённое тернарное кубическое уравнение (1816). У Дирихле, преемника Гаусса на геттингенской кафедре, «Арифметические исследования» были настольной книгой, с которой он почти не расставался, и во многих своих работах он развивал идеи Гаусса. Крупным вкладом Куммера стала разработка теории идеалов, решившей многие алгебраические проблемы.

Решающим шагом в создании новой алгебры стали работы Эвариста Галуа и Артура Кэли, с которых начинается формирование современной общей алгебры.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы — как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий