Как вращается земля

Общие характеристики рассматриваемого объекта

Длина орбиты Земли вокруг Солнца превышает отметку в 930 миллионов километров. Вращение нашей планеты вокруг звёзды под названием Солнце происходит по соответствующей схеме. Ускорение при этом равняется 108 000 километров в час. Количество времени, затрачиваемого на один проход, при этом составляет 365,242199 солнечных дней. Именно по этой причине спустя каждые три года добавляется один день (т. е. в сумме их получается не 365, а 366).

Среднее расстояние от Земли до Солнца

По мере совершения прохода дистанция между нашей планетой и естественным небесным светилом подвергается изменениям. Перигелий происходит на точке в 147 098 074 километра. Средний уровень удалённости равен 149,6 миллионов километров. Наибольший показатель отстранённости (альтернативное название – афелий) наблюдается в отметке 152 097 701 километров.

Рассматривая такой интересный феномен, как орбита Земли, можно сделать вывод о его уникальных особенностях. Особенно тем, кто проживает в северном полушарии. Люди, наблюдающие за явлением из этой области, могли обнаружить, что тепло и холод не имеют сходства с параметром удалённости. Связано это с тем, что они пребывают в зависимости от наклона оси.

Скорость вращения Земли

Правда, земная скорость — вещь относительна. Так как для её расчёта нужна определённая точка отсчёта

Например, для того, чтобы вычислить с какой скоростью движется Земля вокруг своей оси, такой точкой является центр планеты.Однако, говоря о подобном параметре земельного кружения, важно знать, что скорость разделяют на угловую и линейную

Угловая скорость

Это величина, которая равна отношению угла тела к отрезку времени, затраченному на этот поворот. Можно сказать, что это быстрота изменения угла тела за промежуток времени. Выражается она в радианах в секунду, и для всех точек имеет постоянное значение.Как выяснилось, на полный оборот нашей планеты вокруг своей оси требуется 23 часа 56 минут 4,09053 секунды или же, проще говоря, одни звездные сутки.Формула угловой скорости: отношение изменения угла за время.

Формула угловой скорости

Так как земной оборот равен 360 градусов или 2π (2*3,14=6,28), а время этого оборота в секундах 86344, то угловая скорость вращения Земли вокруг своей оси приблизительно равна 7,26851851851-5с-1.

Линейная скорость

Такую характеристику применяют для того, чтобы выразить темп движения по окружности. Как известно, при круговом вращении тела его разные точки имеют разные скорости. Хотя угловая величина перемещения для них остаётся неизменной.

Формула линейной скорости

А это значит, что скорость вращения Земли равна примерно 465 м/сек. То есть расчет производится путём деления окружности на время, затраченное на весь оборот.Однако скорость движения Земли изменяется, потому как её окружность также меняется относительно широты. Ведь радиус планеты уменьшается к полюсам. Соответственно, на разных широтах разный темп вращения. Другими словами, где меньший радиус медленнее и скорость. К примеру, на полюсах она почти нулевая, а на экваторе составляет 1674 км/час.Для того, чтобы рассчитать какова скорость вращения Земли на другой широте, необходимо косинус выбранной широты умножить на экваторную скорость. Например, быстроту движения планеты на широте 30 градусов мы вычислим, если косинус 30 градусов, который равен 0,866, умножим на 1674. Таким образом, получаем 1449,7 км/час.

Сколько весит

Изучение размеров нашей планеты будет неполным без другого параметра – массы. Она составляет 6*1024 килограмма. Объём планеты – свыше 1,08 триллиона кубических километров. Таким образом, плотность планеты составляет около 5,5 грамма на кубический сантиметр.

Измерение окружности и диаметра Земли представляет собой несложную математическую задачу. В этом случае следует применять число π. Однако в силу сжатия планеты длина экваториальная окружность несколько больше, нежели полярная. И из-за этого экваториальный и полярный радиус Земли будет немного отличаться. Зная же показатели окружности, диаметра и радиуса нашей планеты, несложно будет вычислить и площадь ее поверхности.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля – спутник» занимает около 0,12 секунды, а «Земля – спутник – Земля» — 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник – спутник – приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Резкая остановка

Хоть этот вариант гипотетически невозможен, но мы все-таки предположим. Если Земля остановится, что будет? Скорость нашей планеты настолько велика, что резкая остановка по каким-либо причинам, просто снесет все на ней.

Для начала, в каком направлении вращается Земля? С Запада на Восток со скоростью более чем пятьсот метров в секунду. Из этого мы можем предположить, что все, что движется на планете и продолжит свое движение со скоростью более 1,5 тысячи километров в час. Ветер, который будет дуть с такой же скоростью, вызовет сильнейшее цунами. На одном полушарии будет шесть месяцев день, а затем, те, кого не спалит высочайшая температура, добьет полгода сильного мороза и ночи. А что если и после этого останутся живые? Их погубит радиация. Кроме этого, после остановки Земли наше ядро сделает еще несколько оборотов, при этом будут извергаться вулканы в тех местах, где они раньше не встречались.

Атмосфера так же не остановит своего движения мгновенно, то есть будет ветер, дующий со скоростью 500 метров в секунду. Кроме этого, возможна частичная потеря атмосферы.

Этот вариант катастрофы наиболее лучший исход для человечества, ведь все произойдет настолько быстро, что ни один человек просто не успеет опомниться, не поймет, что происходит. Так как наиболее вероятный результат – это взрыв планеты. Другое дело – это медленная и постепенная остановка планеты.

Многим приходит первое на ум – это вечный день на одной стороне, и вечная ночь на другой, но это, на самом деле, не сильно большая проблема, по сравнению с остальными.

Орбиты искусственных спутников Земли

На сегодняшний день в ближайшем околоземном космическом пространстве находится множество объектов, которые являются результатами человеческой деятельности. В основном, это искусственные спутники, служащие для обеспечения связи, однако есть и немало космического мусора. Одним из самых известных искусственных спутников Земли является Международная космическая станция.

ИСЗ движутся по трем основным орбитам: экваториальной (геостационарной), полярной и наклонной.  Первая полностью лежит в плоскости окружности экватора, вторая строго ей перпендикулярна, а третья располагается между ними.

Геосинхронная орбита

Название этой траектории связано с тем, что тело, движущееся по ней, имеет скорость, равную звездному периоду вращения Земли.  Геостационарная орбита – это частный случай геосинхронной орбиты, которая лежит в той же плоскости, что и земной экватор.

При наклонении не равном нулю и нулевом эксцентриситете спутник, при наблюдении с Земли, описывает в течение суток в небе восьмерку.

Первый спутник на геосинхронной орбите – американский Syncom-2, выведенный на нее в 1963 году. Сегодня в некоторых случаях размещение спутников на геосинхронной орбите происходит по причине того, что ракета-носитель не может вывести их на геостационарную.

Геостационарная орбита

Данная траектория имеет такое название по той причине, что, несмотря на постоянное движение, объект, на ней находящийся, остается статичным относительно земной поверхности. Место, в котором находится объект, называется точкой стояния.

Спутники, выведенные на такую орбиту, часто используются для передачи спутникового телевидения, потому что статичность позволяет единожды направить на него антенну и долгое время оставаться на связи.

Высота расположения спутников на геостационарной орбите равна 35 786 километрам. Поскольку все они находятся прямо над экватором, для обозначения позиции называют только меридиан, например, 180.0˚E Интелсат 18 или 172.0˚E Eutelsat 172A.

Приблизительный радиус орбиты равен ~42 164 км, длина – около 265 000 км, а орбитальная скорость – примерно 3, 07 км/с.

Высокая эллиптическая орбита

Высокой эллиптической орбитой называют такую траекторию, высота которой в перигее в несколько раз меньше, чем в апогее. Выведение спутников на такие орбиты имеет ряд важных преимущества. Например, одной такой системы может быть достаточно для обслуживания всей России или, соответственно, группы государств с равной суммарной площадью. Кроме того, системы ВЭО на высоких широтах более функциональные, чем геостационарные спутники. А еще вывод спутника на высокую эллиптическую орбиту обходится приблизительно в 1,8 раза дешевле.

Крупные примеры систем, работающих на ВЭО:

  • Космические обсерватории, запущенные NASA и ESA.
  • Спутниковое радио Sirius XM Radio.
  • Спутниковая связь Меридиан, -З и –ЗК, Молния-1Т.
  • Спутниковая система коррекции GPS.

Низкая околоземная орбита

Это одна из самых низких орбит, которая в зависимости от разных обстоятельств может иметь высоту 160-2000 км и период обращения, соответственно, 88-127 минут. Единственным случаем, когда НОО была преодолена пилотируемыми космическими аппаратами – это программа Апполон с высадкой американских астронавтов на луну.

Большая часть используемых сейчас или использованных когда-либо ранее искусственных земных спутников работали на низкой околоземной орбите. По этой же причине в этой зоне сейчас расположена основная доля космического мусора. Оптимальная орбитальная скорость для спутников, находящихся на НОО, в среднем, равна 7,8 км/с.

Примеры искусственных спутников на НОО:

  • Международная Космическая станция (400 км).
  • Телекоммуникационные спутники самых разных систем и сетей.
  • Разведывательные аппараты и спутники-зонды.

Обилие космического мусора на орбите – главная современная проблема всей космической индустрии. Сегодня ситуация такова, что вероятность столкновения различных объектов на НОО растет. А это, в свою очередь, ведет к разрушению и образованию на орбите еще большего числа фрагментов и деталей. Пессимистичные прогнозы говорят о том, что запущенный Принцип домино может полностью лишить человечество возможности осваивать космос.

Низкая опорная орбита

Низкой опорной принято называть ту орбиту аппарата, которая предусматривает изменение наклона, высоты или другие существенные изменения. Если же у аппарата нет двигателя и он не совершает маневры, его орбиту называют низкой околоземной.

Скорость движения

Земля совершает вращение по направлению с запада на восток.

Звездные сутки — вращение планеты вокруг своей оси и относительно далеких звезд. Солнечные — относительно центра Солнца. Разница периода вращения между ними составляет 3 минуты 56 секунд. Солнечный — ровно 24 часа, звездный — несколько меньше (23 часа 56 минут 4,09971 секунды ).

Угловая скорость рассчитывается по формуле: 2 Пи ÷ звездные сутки = 7,292115078·10–5 c–1.

Линейная скорость вращения Земли (на экваторе) составляет 465,1013 м/с (1674,365 км/ч). Скорость оборота Земли вокруг своей оси зависит от широты: на экваторе она будет максимальной, на полюсах, соответственно, минимальной. Так, на широте 60° скорость в два раза меньше, чем на экваторе.

Скорость движения Земли вокруг Солнца равняется 108 000 км/ч (30 км/сек). Орбитальный путь составляет около 940 000 000 километров. Полный оборот осуществляется за 365.242199 дней.

Времена года

Орбита Земли проходит то ближе, то дальше от Солнца. Точка наиболее близкого схождения называется перигелием, а наиболее далекого — афелием. Но времена года и температура зависят не от этого, разница между перигелием и афелием составляет всего 1,5—2 % от средней величины (средняя величина в данном случае — это расстояние до Солнца, она носит название астрономической единицы и равна примерно 149 600 000 км ). То есть нашу орбиту можно назвать настолько приближенной к кругу, что эти небольшие отклонения не оказывают существенного влияния на изменение сезонных температур.

Время обращения Земли вокруг Солнца составляет 365.242199 средних солнечных дней, этот период почти равен нашему календарному году.

Траектория планеты формируется таким образом, что в один период времени ось Земли ближе к Солнцу своим южным полюсом, а в другой — северным. Соответственно, если в первом случае большую долю тепла получает южное полушарие, то во втором — северное. Именно это влияет на времена года. Связано это с тем, что угол оси планеты к плоскости эклиптики не меняет своего наклона и всегда составляет 23,4°. Таким образом, если представить себе вид спереди, то в крайней левой точке к Солнцу будет северный полюс, а в крайней правой — южный.

Интересно, что сезонность на экваторе выражена совсем не так, как в средних широтах, ведь его удаленность от светила зависима от оси вращения в наименьшей степени. В то же время меняется угол расположения Солнца по отношению к земному экватору. Этот угол имеет четыре пиковых точки, которые и разделяют времена года. В наиболее крайних положениях их называют точками солнцестояния и равноденствия. Первая считается датой начала зимы/лета, вторая — весны/осени.

Равноденствие

Момент прохождения Солнцем небесного экватора является датой равноденствия. То есть в этот момент времени Солнце расположено по отношению к земному экватору практически перпендикулярно, то есть и северное, и южное полушарие получают равную долю света и тепла.

Даты немного «плавают» и могут отличаться в разных часовых поясах, они приходятся примерно на 20 марта и на 22-23 сентября. Эти числа считаются началом астрономической весны и осени, при этом эти сезоны противоположны в разных полушариях. Если в северном в марте наступает весна, то в южном — осень, и наоборот.

Солнцестояние

Явления, когда Солнце по отношению к экватору находится в самом крайнем положении (то есть в моменты, когда угол отклонения от перпендикуляра к экватору Земли наиболее высок), называются солнцестоянием. Такие события так же, как и равноденствие, случаются дважды в год. Называются они зимним и летним солнцестоянием и приходятся на 21—22 декабря и 20—21 июня.

Для северного полушария 21 декабря — дата, когда продолжительность дня минимальна, а ночи — максимальна. Затем длительность дня начинает возрастать (а ночи — уменьшаться) до тех пор, пока 21 июня не начинается обратный процесс. Под днем понимается период между восходом и заходом Солнца. И здесь также применим принцип противоположности: что в северном полушарии самый короткий, то в южном — самый длинный день.

На бытовом уровне в средних широтах можно наблюдать изменения расположение Солнца над горизонтом в полдень. В день зимнего солнцестояния наше светило будет находиться в самой нижней точке над горизонтом, а затем с каждым днем располагаться все выше и выше. В день летнего солнцестояния оно будет расположено в наивысшей точке и затем пойдет на убыль, следствием чего будет также и сокращение дня.

Орбитальная плоскость

Интересно, что под орбитами всех космических тел понимают плоские фигуры. Потому как все точки их движения лежат на одной плоскости. Кстати, плоскость орбиты Земли называют эклиптикой. Более того, аналогичным образом расположены траектории движения всех планет Солнечной системы.

Эклиптика

Ось вращения нашей планеты наклонена под углом 230 по отношению к эклиптике. По этой причине наблюдается разный нагрев земных полушарий. Собственно, поэтому происходят разные погодные условия по сезонам.

Изучение и исследование Земли продолжается и сейчас. Вероятно, потому что наша планета находится в постоянном движении. Однако перемещение не может быть всё время одинаковым. Интересно, что по законам Кеплера небесные тела могут всю свою жизнь совершать обороты вокруг главной звезды. Но в их линии движения возможны отклонения. Поэтому учёные выдвигают варианты, когда и как планеты могут сойти со своей привычной орбиты. На сегодняшний день для такого прогнозирования применяют компьютерное моделирование. В результате получается не одно возможное будущее нашей Солнечной системы. В любом случае, что будет нам покажет время.

Космический мусор

Окружающая среда НОО становится перегруженной космическим мусором из-за частых запусков объектов. В последние годы это вызывает растущую озабоченность, поскольку столкновения с орбитальными скоростями могут быть опасными и даже смертельными. Столкновения могут привести к появлению еще большего количества космического мусора, создавая эффект домино , известный как синдром Кесслера . Space Operations Center Совмещенная , часть Соединенных Штатов стратегического командования (ранее Космическое командование США), в настоящее время отслеживает более 8500 объектов больше , чем 10 см в ЕМ. Однако ограниченное исследование обсерватории Аресибо показало, что там может быть около миллиона объектов размером более 2 миллиметров, которые слишком малы, чтобы их можно было увидеть из наземных обсерваторий.

ФизикаУчебник для 10 класса

§ 1.26. Равномерное движение точки по окружности. Центростремительное ускорение

Характерные особенности этого движения содержатся в его названии: равномерное — значит с постоянной по модулю скоростью (и = const), no окружности — значит траектория — окружность.

Равномерное движение по окружности

До сих пор мы изучали движения с постоянным ускорением. Однако чаще встречаются случаи, когда ускорение изменяется.

Вначале мы рассмотрим простейшее движение с переменным ускорением, когда модуль ускорения не меняется. Таким движением, в частности, является равномерное движение точки по окружности: за любые равные промежутки времени точка проходит дуги одинаковой длины. При этом скорость тела (точки) не изменяется по модулю, а меняется лишь по направлению.

Мы по-прежнему будем считать тело настолько малым, что его можно рассматривать как точку. Для этого размеры тела должны быть малы по сравнению с радиусом окружности, по которой движется тело.

Среднее ускорение

Пусть точка в момент времени t занимает на окружности положение А, а через малый интервал времени Δt — положение А1 (рис. 1.82, а). Обозначим скорость точки в этих положениях через и 1. При равномерном движении v1 = v.

Рис. 1.82

Для нахождения мгновенного ускорения сначала найдем среднее ускорение точки. Изменение скорости за время Δt равно Δ и = 1 — (см. рис. 1.82, а).

По определению среднее ускорение равно

Центростремительное ускорение

Задачу нахождения мгновенного ускорения разобьем на две части: сначала найдем модуль ускорения, а потом его направление. За время Δt точка А совершит перемещение = Δ.

Рассмотрим треугольники ОАА1 и А1СВ (см. рис. 1.82, а). Углы при вершинах этих равнобедренных треугольников равны, так как соответствующие стороны перпендикулярны. Поэтому треугольники подобны. Следовательно,

Разделив обе части равенства на Δt, перейдем к пределу при стремлении интервала времени Δt —» 0:

Предел в левой части равенства есть модуль мгновенного ускорения, а предел в правой части равенства представляет собой модуль мгновенной скорости точки. Поэтому равенство (1.26.1) примет вид:

Отсюда

Очевидно, что модуль ускорения при равномерном движении точки по окружности есть постоянная величина, так как v и г не изменяются при движении.

Направление ускорения

Найдем направление ускорения . Из треугольника A1CB следует, что вектор среднего ускорения составляет с вектором скорости угол β = . Но при Δt —> О точка А1 бесконечно близко подходит к точке А и угол α —» 0. Следовательно, вектор мгновенного ускорения составляет с вектором скорости угол

Значит, вектор мгновенного ускорения а направлен к центру окружности (рис. 1.82, б). Поэтому это ускорение называется центростремительным (или нормальным1).

Центростремительное ускорение на карусели и в ускорителе элементарных частиц

Оценим ускорение человека на карусели. Скорость кресла, в котором сидит человек, составляет 3—5 м/с. При радиусе карусели порядка 5 м центростремительное ускорение а = ≈ 2—5 м/с2. Это значение довольно близко к ускорению свободного падения 9,8 м/с2.

А вот в ускорителях элементарных частиц скорость оказывается довольно близкой к скорости света 3 • 108 м/с. Частицы движутся по круговой орбите радиусом в сотни метров. При этом центростремительное ускорение достигает огромных значений: 1014—1015 м/с2. Это в 1013—1014 раз превышает ускорение свободного падения.

Равномерно движущаяся по окружности точка имеет постоянное по модулю ускорение а = , направленное по радиусу к центру окружности (перпендикулярно скорости). Поэтому это ускорение называется центростремительным или нормальным. Ускорение а при движении непрерывно изменяется по направлению (си. рис. 1.82, б). Значит, равномерное движение точки по окружности является движением с переменным ускорением.

1 От латинского слова normalis — прямой. Нормаль к кривой линии в данной точке — прямая, проходящая через эту точку перпендикулярно к касательной, проведенной через ту же точку.

Карта поверхности

Нажмите на изображение, чтобы его увеличить

  • Интересные факты о планете Земля;
  • Как погибнет Земля;
  • Как закончится жизнь на Земле?
  • Как Земля защищает нас от космоса?
  • Самая похожая на  Землю планета
  • Как появилась вода на Земле?
  • Кто открыл Землю?
  • Разрушение Земли
  • Смогут ли люди передвинуть Землю?
  • Как сформировалась Земля

Строение Земли

  • Сколько спутников у Земли;
  • Земля круглая?
  • Почему Земля круглая?
  • Есть ли у Земли кольца?
  • Насколько большая Земля?
  • Возраст Земли;
  • Масса Земли;
  • Земная гравитация
  • Сколько весит Земля?
  • Сколько весит Земля? Сравнение;
  • Размер Земли
  • Диаметр Земли;
  • Окружность Земли
  • Плотность Земли
  • Магнитное поле Земли;
  • Геомагнитный разворот

Поверхность Земли

  • Поверхность Земли;
  • Что такое поверхностная земная зона?
  • Терминатор Земли
  • Сколько километров займет путь вокруг Земли?
  • Эффект Альбедо
  • Альбедо Земли
  • Гравитация Земли;
  • Температура на Земле;

Положение и движение Земли

  • Земля, Солнце и Луна;
  • Что приводит к смене дня и ночи?
  • Циклы Миланковича
  • Солнечный день
  • Как долго солнечный свет добирается к Земле?
  • Вращение Земли вокруг Солнца;
  • Что такое земное вращение?
  • Почему Земля вращается?
  • Что произойдет, если Земля перестанет вращаться?
  • Почему Земля наклонена?
  • Северный магнитный полюс
  • Орбита Земли;
  • Прецессии равноденствий
  • Расстояние от Земли до Солнца;
  • Ближайшая к Земле звезда;
  • Ближайшая к Земле планета;
  • Сколько длится день на Земле;
  • Зимнее солнцестояние
  • Сколько длится земной год;
  • Скорость вращения Земли;
  • Ось вращения Земли;
  • Наклон Земли;

Ссылки

Планеты Солнечной системы
Карликовые планеты Плутон · Церера · Хаумеа · Макемаке · Эрида
Планеты Земной группы Меркурий · Венера · Земля · Марс
Газовые гиганты Юпитер · Сатурн · Уран · Нептун
Солнечная система

Состав системы Земля

Александрийская библиотека

Библиотека была не просто академией или местом собрания древних знаний. Она была сосредоточием науки того времени. Задаваясь вопросом о том, кто такой Эратосфен, нельзя не упомянуть о той деятельности, которую он развернул, будучи назначенным главным хранителем Александрийской библиотеки.

Здесь жили и работали многие знаменитейшие философы античности, а также готовились кадры для администрации Птолемеев. Огромный штат переписчиков и наличие папируса позволяли пополнять фонды на месте. достойно соперничала с Пергамской. Были предприняты ещё некоторые шаги, направленные на увеличение фонда. Все найденные на кораблях свитки и пергаменты бережно копировались.

Ещё одно нововведение Эратосфена — это учреждение целого отдела, изучающего Гомера и его наследие. Немало он тратил и своих личных средств на покупку древних свитков. По некоторым сохранившимся до наших дней сведениям, здесь хранилось свыше семисот тысяч рукописей и пергаментов. Эратосфен продолжил дело своего учителя Каллимаха, который основал научную библиографию. И до 194 года до н. э. верно исполнял возложенные на него обязательства, пока с ним не случилось несчастье — он ослеп и не мог заниматься любимым делом. Это обстоятельство лишило его тягу к жизни, и он умер, перестав принимать пищу.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий