Соединение резисторов

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + … + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:

Rобщ = R1 + R2 + … + Rn.

Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.

Пример:

  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.

Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:

Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.

Расчет подтвердил отсутствие ошибок.

Параллельное соединение резисторов

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.

Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:

I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.

Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

Последовательное преобразование схемы для упрощения вычислений

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Ток в цепи параллельно соединенных резисторов

В ходе рассмотрения соответствующих участков разветвленных схем необходимо помнить о равенстве токов на входе и выходе из каждого узла, а также до и после группы из параллельных резисторов. Это правило поможет проверить правильность расчетов. Если отмеченное соответствие не соблюдено, устраняют ошибку вычислений.

Сила тока при параллельном соединении

С применением рассмотренных выше исходных данных для двух сложных схем можно сделать расчет для каждой отдельной ветки.

Пример 1:

  • общий ток в цепи составляет 0,8 А;
  • распределение напряжений на отдельных участках несложно определить по рассчитанным эквивалентным сопротивлениям: U12 = I * Rэкв1 = 0,8 * (2*4)/ (2+4) = 0,8 * 1,3 = 1,04 V;
  • по стандартному алгоритму вычисляют значения токов: I1 = U12/R1 = 0,52 А, I2 = U12/R2 = 0,26 А;
  • суммированием проверяют корректность вычислений: I = I1 + I2 = 0,52 + 0,26 ≈ 0,8 А.

Пример 2 (смешанный способ соединения резисторов):

  • ток в этом варианте – 1,2 А;
  • напряжение на участке с группой параллельных резисторов составляет Uав = I * Rэкв(12345) = 1,2*2,5 =3V;
  • по аналогии с предыдущим примером несложно вычислить ток в каждой отдельной ветке: I12 = Uав/(R1 + R2) = 3/ (15 + 5) = 0,15 А;
  • I3 = Uав/ R3 = 3/ 5 = 0,6 А;
  • I4 = Uав/ R4 = 3/ 10 = 0,3 А;
  • I5 = Uав/ R5 = 3/20 = 0,15 А;
  • по правилу равенства токов на входе и выходе из узла проверяют правильность сделанных расчетов: I = I12 + I3 + I4 + I5 = 0,15 + 0,6 + 0,3 + 0,15 = 1,2 А.

Мощность при параллельном соединении

Для правильного выбора резистивных компонентов электрических цепей обязательно следует учитывать мощность рассеивания. Этот параметр (Р) рассчитывают по классической формуле P = U (напряжение на выводах, В) * I (сила тока в цепи, А). Он косвенно определяет энергию, которая расходуется на выделение тепла. Также применяют пропорции:

P = I2 *R = U2/ R.

К сведению. Конструкция каждого элемента рассчитана на определенный рабочий температурный диапазон. Превышение порога способно разрушить деталь, место пайки, соседние компоненты. Следует не забывать об одновременном существенном изменении сопротивления, которое способно нарушить функциональное состояние электрической схемы.

Для расчета выбирают подходящую формулу с учетом известных исходных параметров (данные из примера 2 в предыдущем разделе):

  • ток – 1,2 А;
  • на сопротивлении R6=7,5 Ом мощность рассеивания составит: P6 = I2 *R = 1,44 * 7,5 = 10,8 Вт;
  • найти такой резистор сложно, так как в стандартном ряду предлагаются номиналы от 0,05 до 5Вт;
  • в другой цепи (R5=20 Ом) расчетный ток составит 0,15 А, поэтому P5= 0,0225 * 20 = 0,45 Вт;
  • в этом случае можно выбрать изделие с подходящей мощностью рассеивания в стандартной номенклатуре 0,5 Вт (специалисты рекомендуют делать 1,52 кратный запас, поэтому лучше использовать резистор на 1 Вт).

Стандартные обозначения на электрических схемах и типовые номиналы по мощности

К сведению. При выборе резисторов следует учитывать класс изделия по точности электрического сопротивления. В серийных деталях допустимы отклонения 5-20%.

Как найти сопротивление при параллельном соединении

Для расчета этого параметра применяют формулы:

  • 1/G;
  • U/I;
  • U2/P;
  • P/I2.

Выбирают подходящий вариант (комбинацию) с учетом имеющихся исходных данных. Следует помнить о едином напряжении на входе и выходе и разных токах в отдельных ветках. Технология вычислений рассмотрена в предыдущих разделах.

Как подключить резистор в цепь

Для сборки составного устройства необходимо соединить несколько элементов одним из основных методов и таким образом получить нужный номинальный показатель. В практике это используется очень часто. Навыки правильного подключения устройств и расчета их общего сопротивления используются мастерами для ремонта проводки или радиолюбителями при сборке устройства. В интернете можно найти много схем с различным видом подключения. Ниже описано какое соединение резисторов называется параллельным.

Параллельное соединение резисторов схема

Параллельно

Параллельное — это одно из двух типов электрических соединений, когда два вывода единственного устройства соединены с соответствующими выводами других элементов. Очень часто их могут соединять последовательно или параллельно, чтобы сделать более усложненные электрические схемы.

При этом виде соединения напряжение на всех устройствах будет равным, а проходящий через них ток — пропорционален их сопротивлению.

Такой вариант подключения один из простых, очень часто именно его рекомендуют использовать тем, кто не имеет опыта работы с электрикой.

Последовательно

Формула расчета достаточно легкая. Общее сопротивление при параллельном соединении формула:

Rобщ. = R1+R2+R3+…+Rn.

Сопротивление двух и более параллельно соединенных резисторов указано как Rобщ.

Последовательный способ подключения

Остальные элементы указываются как R, R2, R3 и так далее.

Обратите внимание! Используя последовательное соединение, необходимо запомнить один важный нюанс. Из общего количества компонентов, соединённых последовательным методом, основную роль занимает тот, у которого самое высокое сопротивление

Как это понять? Для примера, если необходимо соединить три устройства, номинал которых будет равняться 1, 10 и 100 Ом, то в итоге получится составной на 111 Ом.

Смешанный тип подключения

Если исключить прибор на 100 Ом, то все сопротивление схемы резко снизится до 11 Ом. А если исключить, например, на 1 Ом, то показатель получится уже 110 Ом. В итоге устройства с небольшим сопротивлениями в последовательной цепочке почти не влияют на все показатели.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

Расчет параллельного соединения резисторов

Для лучшего понимания процессов следует подробно рассмотреть представленную ниже схему. В контрольных точках (разрывах цепей) условно показаны измерительные приборы. Аналогичным образом подключают мультиметр для уточнения результатов теоретических вычислений. Чтобы не усложнять объяснение, использован «идеальный» источник постоянного тока. Его сопротивление в расчетах не учитывается. Аналогичным образом игнорированы емкостные (индуктивные) реактивные составляющие, которые способны создать незначительные нелинейные искажения.

Электрическая схема с пояснительными формулами

В рассматриваемом примере ток (I) идет по замкнутому контуру от положительного к отрицательному электроду АКБ. На входе параллельного участка (точка «а») он разделяется на I1 (I2), проходящие через разные ветки с электрическими сопротивлениями R1 (R2), соответственно. В точке «б» происходит объединение токов.

Если присоединить клеммы мультиметра к положительной клемме аккумулятора и входной точке, а после повторить измерение на выходе, будут определены одинаковые значения. Однако в отдельных ветвях токи будут отличаться, если применены разные сопротивления (R1≠R2). Сложение показаний подтвердит равенство суммы полученным ранее результатам измерений на входе (выходе). Промежуточный вывод, подтвержденный экспериментально:

Iобщ = I1 + I2.

Далее можно проверить разницу потенциалов на клеммах источника питания (Uип), в контрольных точках (Uаб) и на отдельных резисторах (UR1 и UR2). Несложно убедиться в том, что Uип = Uаб = UR1 = UR2. Для отдельных ветвей будут действительны пропорции:

  • UR1 =  I1 * R1;
  • UR2 = I2 * R2.

Однако с учетом результатов измерений можно приравнять обе стороны выражений:

UR1 = UR2 = I1 * R1 = I2 * R2.

Простым преобразованием получают соотношение:

I1/I2 = R2/R1.

На основе этой формулы надо сделать следующий важный вывод: токи обратно пропорциональны электрическим сопротивлениям в соответствующих ветвях параллельной цепи.

Пример с исходными данными:

  • батарейка Uип = 6V;
  • сопротивление параллельных резисторов: R1 = 50 Ом, R2 = 150 Ом.

Расчет:

  • найти ток в первой ветке можно по формуле: I1 = Uип / R1 = 6/50 = 0,12А = 120 мА;
  • аналогичным образом вычисляют: I2 = Uип / R2 = 6/150 = 0,04А = 40 мА;
  • суммарное значение: Iобщ = I1 + I2 = 120 + 40 = 160 мА;
  • соблюдается отмеченный выше принцип пропорциональности: I1/I2 = R2/R1 = 50/150 = 40/120 ≈ 0,333.

Следует отметить разную силу тока в отдельных ветках. Для наглядности можно вспомнить пример с аналогом из водопроводных труб. В разветвленном участке по протоку с крупным диаметром пройдет больше жидкости, по сравнению с другим за контрольный временной интервал. Аналогичным образом действует электрическое сопротивление. При увеличении номинала пассивного элемента создаются дополнительные препятствия прохождению тока.

Для расчета сложных схем используют технологию эквивалентных сопротивлений. Этим термином обозначают расчетную величину (Rэкв), которая равна сумме измеряемых параметров отдельных компонентов на определенном участке цепи. Проще всего сделать вычисления, если соединить резисторы (номиналы из примера) последовательно:

Rэкв = R1 + R2 = 50 + 150 = 200 Ом.

Ниже подробно рассмотрен вариант с параллельной схемой:

  • по закону Ома для всей цепи действительно выражение: Iобщ = Uип/ Rэкв;
  • в отдельных ветках: I1 = U1/ R1 (I2 = U2/ R2);
  • по закону Кирхгофа для каждого провода: I = I1+ I2;
  • преобразование перечисленных соотношений позволяет сделать промежуточный вывод: Uип/ Rэкв = U1/ R1 + U2/ R2;
  • с учетом равенства напряжений: Uип = U1 = U2, можно переделать предыдущую формулу следующим образом: Uип/ Rэкв = Uип / R1 + Uип / R2 = Uип (1/R1 + 1/R2);
  • делением на общий множитель Uип получают итоговое выражение: 1/Rэкв = 1/R1 + 1/R2.

Последняя позиция позволяет сделать несколько важных заключений:

  • общая проводимость (величина, обратная электрическому сопротивлению) равна сумме проводимостей параллельных участков цепи;
  • эквивалентное сопротивление можно вычислить делением единицы на проводимость;
  • Rэкв при параллельном соединении всегда меньше самого меньшего из пассивных компонентов цепи.

Виды соединений

Резистор — пассивный элемент
, присутствующий в каждой электрической цепи. Он предназначен для того, чтобы сопротивляться электрическому току. Существует два вида резисторов:

  1. Постоянные.
  2. Переменные.

Зачем же спаивать проводники друг с другом? Например, если для какой-то электрической цепи нужно определённое сопротивление. А среди номинальных показателей нужного нет. В таком случае необходимо подобрать элементы схемы с определёнными значениями сопротивления и соединить их. В зависимости от вида соединения и сопротивлений пассивных элементов мы получим какое-то определённое сопротивление цепи. Оно называется эквивалентным. Его значение зависит от вида спайки проводников. Существует три вида соединения проводников:

  1. Последовательное.
  2. Параллельное.
  3. Смешанное.

Значение эквивалентного сопротивления в цепи считается достаточно легко. Однако, если резисторов в схеме очень много, то лучше воспользоваться специальным калькулятором, который считает это значение. При ведении расчёта вручную, чтобы не допускать ошибок, необходимо проверять, ту ли формулу вы взяли.

Параллельное соединение сопротивлений

При параллельном подключении все сопротивления подключаются началами к одной точке источника питания, а концами к другой. Далеко ходить не будем, и посмотрим вокруг себя. Фен, утюг, стиральная машинка, тостер, микроволновка и любой другой электрический прибор имеют вилку с двумя рабочими концами и одним защитным (заземлением). Напряжение в розетке это наш источник питания. Сколько бы электроприборов мы не включили в сеть – мы их все включаем параллельно к одному источнику питания. Давайте нарисуем схему, чтобы стало более понятно.

Сколько бы эту схему не добавилось потребителей – ровным счётом ничего не меняется. Один конец электроприбора подключается к нулевой шине, а второй к фазе.  Теперь несколько преобразуем схему:

Теперь перед нами три сопротивления:

Утюг  2,2 кВт – R1 (22 Ом);

Плита 3,5 кВт – R2 (14 Ом);

Лампочка 100 Вт – R3 (484 Ом).

Таковы реальные значения сопротивления этих потребителей электрическому току. Включаем по очереди наши потребители в сеть, и что происходит со счетчиком? Правильно, он начинает быстрее считать деньги в нашем кошельке. Теперь вспоминаем закон Ома, который гласит, что сила тока обратно пропорциональна сопротивлению и понимаем, что чем меньше сопротивление, тем выше сила тока. А чтобы еще проще было понять, что происходит, представьте себе концертный зал с тремя разными по габаритам выходами и толпой людей. Чем больше по габаритам открывается дверь, тем больше человек одновременно могут через нее пройти, а чем больше откроется дверей, тем больше это увеличит пропускную способность. Ну а теперь перейдём к формулам.

К каждому сопротивлению приложено одно и то же напряжение – 220 вольт.

Из схемы и из практики видим, что токи складываются в один общий, следовательно, получаем следующее уравнение:

Если внимательно присмотритесь к уравнению, то заметите, что верхняя часть уравнения у нас неизменна и её можно принять за единицу, получив следующую формулу:

Ещё есть частная формула для расчёта двух параллельно соединенных сопротивлений:

Ну и давайте на практике сделаем расчёт.

И получим общее сопротивление 8,407 Ом.

В предыдущей статье я рассматривал баланс мощности и давайте его проверим.

Мощность цепи будет:

Считаем наши мощности: 2000+3500+100=5600, что почти равно 5757, такая большая погрешность обусловлена тем, что я округлил значения сопротивлений до целых чисел.

Какие можно сделать выводы. Как видите, общее сопротивление (его ещё называют эквивалентным) всегда будет меньше, чем самое малое сопротивление цепи. В нашем случае это плита с сопротивлением 14 Ом и эквивалентное 8,4 Ом. Оно и понятно. Помните пример с дверями в концертном зале? Сопротивление можно назвать пропускной способностью. Так вот общее количество выходящих людей (электронов) из зала будет в сумме больше, чем пропускная способность каждой отдельно взятой двери. То есть, количество тока увеличивается. Другими словами, для тока каждое из сопротивлений будет еще одной дверью, через которые он может протекать.

Резисторы

Соединяем последовательно

[Сопротивление последовательно соединенных резисторов, кОм] = [Сопротивление первого резистора, кОм] + [Сопротивление второго резистора, кОм]

[Мощность, рассеиваемая первым резистором, Вт] = [Сопротивление первого резистора, кОм] * [Сила тока, мА] ^ 2 / 1000

[Мощность, рассеиваемая вторым резистором, Вт] = [Сопротивление второго резистора, кОм] * [Сила тока, мА] ^ 2 / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 1 кОм, 4 Вт.

Включаем параллельно

[Сопротивление параллельно соединенных резисторов, кОм] = 1 / (1 / [Сопротивление первого резистора, кОм] + 1 / [Сопротивление второго резистора, кОм])

Эта формула интуитивно понятна, да и формально может быть выведена из следующего соображения. При заданном напряжении на резисторах через каждый из них независимо идет ток, равный напряжению, деленному на сопротивление. Итоговое сопротивление равно напряжению, деленному на суммарный ток. В формулах значение напряжения счастливым образом сокращается, и получается приведенная формула.

[Мощность, рассеиваемая первым резистором, Вт] = [Напряжение на резисторах, В] ^ 2 / [Сопротивление первого резистора, кОм] / 1000

[Мощность, рассеиваемая вторым резистором, Вт] = [Напряжение на резисторах, В] ^ 2 / [Сопротивление первого резистора, кОм] / 1000

Получается, что из двух резисторов по 500 Ом на 2 Вт можно сделать один на 250 Ом, 4 Вт.

(читать дальше…) :: (в начало статьи)

 1   2   3   4 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

4 резистора собраны последовательно.
Каждый 8 ом, 1200 Ватт.
Суммарная мощность соединения? Читать ответ…

Еще статьи

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категор…
Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Кла…

Плавная регулировка яркости свечения люминесцентных ламп дневного свет…
Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра…

Проверка электронных элементов, радиодеталей. Проверить исправность, р…
Как проверить исправность детали. Методика испытаний. Какие детали можно использ…

RC — цепь. Резисторно — конденсаторная схема. Резистор, конденсатор. И…
Расчет RC — цепи, изменения напряжения на конденсаторе в зависимости от времени….

Силовой резонансный фильтр для получения синусоиды от инвертора…
Для получения синусоиды от инвертора нами был применен самодельный силовой резон…

Силовой мощный импульсный трансформатор. Проектирование. Изготовление….
Проектирование силового импульсного трансформатора….

Как рассчитать время разряда и заряда конденсатора через резистор

Чтобы осуществить заряд устройства, нужно включить устройство в цепь и присоединить к зажимам генератора. Как вы уже знаете, генератор имеет внутреннее сопротивление.

Если резистор подключить к заряженному конденсатору то ключ будет замкнут и конденсатор начнёт зарядку до напряжения между обкладками, которая станет равна э.д.с генератора и равна Uc=E. При этом, обкладка которая соединена с положительным зажимом, получит положительный заряд, вторая же получит отрицательный заряд.

Чтобы обе обкладки устройства полностью зарядились, нужно, чтобы одни из них приобрела определенное количество электронов, а вторая столько же потеряла.

Зарядный ток в цепи будет протекать сотые доли секунды, пока величина напряжения на устройстве достигнет такой же уровня, что и на генераторе. В то время, пока конденсатор будет заряжаться, по всей цепи будет проходить зарядный ток. Вначале он будет иметь максимальную величину, т.к. величина напряжения станет равна 0.

По мере того как конденсатор станет заряжаться, величина R на нём будет падать.

Время процесса зарядки будет зависеть от следующих величин:

  1. Внутреннее сопротивление электрического генератора.
  2. Способность конденсатора принять количество тока.

Для того, чтобы разрядить устройство нужно отключить его от генератора переменного тока и присоединить к его обкладкам сопротивление. Дело в том, что на обкладках уже есть разность потенциалов, поэтому в цепи потечет ток.

Он будет проходить от одной обкладки через сопротивление к другой. Процесс разряда будет проходить до тех пор, пока обе обкладки не станут равны, т.е. пока напряжение между ними станет равно 0.

В самом начале, напряжение будет максимальным, сила тока – наибольшая. Как только начнется разрядка, напряжение и сила тока будут уменьшаться.

Продолжительность разряда устройства имеет зависимость от:

  • Отношению заряда к разности потенциалов;
  • Удельному электрическому сопротивлению.

Чем значение сопротивления выше, тем дольше будет происходить разряд конденсатора. Это можно объяснить тем, что при максимальном сопротивлении, сила тока небольшая, а величина заряда станет медленно уменьшаться.

Для того, чтобы рассчитать время заряда и разряда на устройстве, лучше всего воспользоваться онлайн калькулятором.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий